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Abstract

The objective of this paper is to develop simple but comprehensive constitutive equations that model a number of
physical phenomena exhibited by dry porous geological materials and metals. For geological materials the equations

model: porous compaction; porous dilation due to distortional deformation and tensile failure; shear enhanced
compaction; pressure hardening of the yield strength; damage of the yield strength due to distortional deformation
and porosity changes; and dependence of the yield strength on the Lode angle. For metals the equations model:

hardening of the yield strength due to plastic deformation; pressure and temperature dependence of the yield
strength, and damage due to nucleation of porosity during tensile failure. The equations are valid for large
deformations and the elastic response is hyperelastic in the sense that the stress is related to a derivative of the

Helmholtz free energy. Also, the equations are viscoplastic with rate dependence occurring in both the evolution
equations of porosity and elastic distortional deformations. Moreover, formulas are presented for robust numerical
integration of the evolution equations at the element level that can be easily implemented into standard computer
programs for dynamic response of materials. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Developing realistic mathematical constitutive equations to model the dynamic response of a wide
range of materials has been a main objective of research in continuum mechanics for the last few
decades. With ever increasing computational power of modern computers it has become more practical
to implement these nonlinear constitutive equations in real applications. The response of structures to
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Nomenclature

a, a0, a1, a2 auxiliary functions controlling dependence of the yield strength on the Lode angle
A1 material constant controlling pressure sensitivity of the shear modulus
A2 material constant controlling temperature sensitivity of the shear modulus
Ap rate of inelastic volume change
Ap rate of inelastic distortional deformation
A 0 material constant controlling the rate sensitivity of inelastic deformation
b, b0, b1, b2 auxiliary functions controlling dependence of the yield strength on the Lode angle
bs material constant that speci®es the volume dependence of the Gruneisen gamma
Be elastic deformation tensor
B 0e elastic distortional deformation tensor
B 0�e elastic trial value of B 0e
B 00e deviatoric part of the elastic distortional deformation
B 00�e elastic trial value of B 00e
csv speci®c heat of the solid
c1, c2 material constants controlling porous compaction
c3, c4 material constants de®ning shear enhanced compaction
Cs0 low pressure shock velocity
d0, d1, d2 auxiliary functions for the determination of the rate sensitivity of plasticity
dv element of total volume in the present con®guration
dvp element of pore volume in the present con®guration
dvs element of solid volume in the present con®guration
dV element of total volume in the reference con®guration
dVp element of pore volume in the reference con®guration
dVs element of solid volume in the reference con®guration
D shock velocity
Du uniaxial deformation rate
Dv dilatational deformation rate
D rate of deformation tensor, symmetric part of L
Dp rate of plastic deformation
ev elastic volume strain
ei rectangular Cartesian base vectors
E11 Lagrangian axial strain
E12 Lagrangian shear strain
Ev Lagrangian volumetric strain
f function that controls the e�ect of damage
f1, f2 functions de®ning the Helmholtz free energy
F1 function that controls hardening of the yield strength
F2 function that controls pressure sensitivity of the yield strength
F3 function that controls damage of the yield strength due to distortional deformation
F4 function that controls dependence of the yield strength on the Lode angle
F5 function that controls the dependence of the yield strength on pressure and

temperature
F6 function that controls dependence of the yield strength on porosity
F7 function that controls damage of the yield strength due to porosity changes
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F8 function that controls shear enhanced compaction
F � @x=@X the total deformation gradient
g yield function
G shear modulus
G0 value of the shear modulus in the reference con®guration
g temperature gradient relative to the present con®guration
g 0e elastic distortional strain
H�x� Heaviside function
I second-order unity tensor
J total relative volume
Jc total relative volume at the onset of porous compaction
Je elastic relative volume
Js relative volume of the solid
k heat conduction coe�cient
K material constant for plastic strain hardening
k1, k2 material constants de®ning the function F1

k3, k4 material constants de®ning the function F2

k5, k6 material constants de®ning the function F3

k7, k8 material constants de®ning damage due to porosity on Y and pd

L velocity gradient
m material constant controlling the rate dependence of porous dilation on spall strength
md material constant controlling the rate of porous dilatation due to distortional

deformation
n material constant controlling the shape of the spall curve
p total pressure
p� material constant controlling the rate of porous dilatation due to distortional

deformation
pc value of the pressure at the onset of porous compaction
pd function controlling the magnitude of the pressure during porous dilation
pd0 material constant that controls the negative value of pressure at the onset of porous

dilation
ps pressure in the solid
psl pressure in the solid mainly due to volume and temperature
p 0s pressure in the solid mainly due to elastic distortional deformation
psH pressure on the Hugoniot
p external rate of entropy ¯ux per unit present area
q material constant that controls the transition from Mohr±Coulomb to Mises response
Q1, Q10 functions that control the yield strength during torsion (TOR)
Q2, Q20 functions that control the yield strength during triaxial extension (TXE)
Q function that controls the transition from Mohr±Coulomb to Mises response
q external rate of heat ¯ux per unit present area
r speci®c external rate of heat supply
s speci®c external rate of supply entropy
S1, S2, S3 material constants that specify the shock velocity vs particle velocity curve
t time
t1 beginning of a time step
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t2 end of a time step
T Cauchy stress tensor
T ' deviatoric part of the Cauchy stress
T '� elastic trial value of T '
T 's deviatoric part of the Cauchy stress in the solid
v velocity of a material point
xi rectangular Cartesian components of x
XA rectangular Cartesian components of X
x position vector of a material point in the present con®guration
X position vector of a material point in the reference con®guration
Y yield strength in uniaxial stress
Y � elastic trial value of Y
Y0 reference value of the yield strength
Y 01 maximum value of the yield strength due to plastic strain hardening
hxi McAuley brackets

Greek symbols
a1 invariant of elastic distortional deformation
a2 invariant of elastic distortional deformation
b Lode angle
gs Gruneisen gamma for the solid in the present con®guration
gs0 Gruneisen gamma for the solid in the reference con®guration
Gd material constant controlling the rate of porous dilation
Gc material constant controlling porous compaction
Gp function controlling the magnitude of elastic distortional deformation
Gp0 material constant controlling the rate sensitivity of inelastic deformation
Dt time interval
e speci®c internal energy
ed material constant controlling damage due to distortional deformation
ep equivalent plastic strain
esl speci®c energy of the solid mainly due to volume and temperature
e 0s speci®c energy of the solid mainly due to elastic distortional deformation
esH speci®c internal energy on the Hugoniot
ev material constant controlling the rate of damage due to porous compaction
Z entropy per unit mass
Zs speci®c entropy of the solid
Zsl speci®c entropy of the solid mainly due to volume and temperature
Z 0s speci®c entropy of the solid mainly due to elastic distortional deformation
y absolute temperature
y0 value of y in the reference con®guration
k rate of shearing
l scalar controlling the amount of radial return of the stress due to plasticity
�l auxiliary variable for determination of rate sensitivity of plasticity
n Poisson's ratio
x speci®c internal rate of production of entropy
x 0 speci®c internal rate of entropy production due to material dissipation
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shock loading is a particularly challenging area of research. Near the source of the shock loading it is
necessary to model fully coupled nonlinear thermomechanical e�ects. In that region, the magnitude of
the deviatoric stress is usually much smaller than that of the pressure so details of the strength of the
material being loaded are often negligible. However, due to the divergent e�ect of spherical geometry
these strength e�ects become quite signi®cant as the shock wave propagates away from the source and
approaches free surfaces or buried structures. Thus, it is necessary to use thermodynamically consistent
constitutive equations for nonlinear deformations that are applicable both near the source and far away
from it.

It is well known that when metals experiences su�cient distortion, dislocations tend to move through
the atomic lattice causing macroscopic plastic deformations. Also, when metals are subjected to
su�cient tension then voids tend to initiate and grow causing tensile failure. Such e�ects can usually be
modeled using a yield function that limits the value of von Mises stress by a yield strength which
depends on a hardening variable, by introducing a measure of porosity to model void growth, and by
introducing a measure of damage that reduces the yield strength due to tensile failure. Geological
materials di�er from metals in that inelastic deformations are not due to motions of dislocations but
rather due to damage associated with microfracturing and granular ¯ow. Nevertheless, the mathematical
structure of plasticity theory seems to be capable of capturing the main features of the response of these
materials as well. Therefore, in this paper the term plasticity will be used in a general sense to include all
inelastic deformation.

x 0d speci®c internal rate of entropy production due to inelastic distortional deformation
x 0f speci®c internal rate of entropy production due to porosity changes
r mass per unit present total volume
r0 mass per unit reference total volume
rs mass of the solid per unit present solid volume
rs0 mass of the solid per unit reference solid volume
s� spall stress
se von Mises e�ective stress
s�e elastic trial value of se

F porosity in the reference con®guration
f porosity in the present con®guration
fmin minimum value of porosity attained during loading
fmax maximum value of porosity attained during loading
f� material constant controlling the amount of porous dilatation due to distortional

deformation
f�min minimum value of fmin and f�

f�c maximum value of f��c and f�

f��c function controlling porous compaction
f�d function controlling the amount of porous dilation
fs material constant related to the spall strain
c speci®c Helmholtz free energy
cs speci®c Helmholtz free energy of the solid
csl speci®c Helmholtz free energy of the solid mainly due to volume and temperature
o measure of damage due to porosity changes
O measure of damage due to distortional deformation
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In modeling geological materials the yield strength depends on both pressure and the Lode angle (e.g.
Hill, 1950, p. 18). Also, porosity in these materials is naturally due to their granular nature and it
measures not only voids but microcracks as well. At su�cient levels of pressure, compaction occurs and
the porosity decreases. Moreover, shear enhanced compaction can occur when both pressure and
deviatoric stress are acting simultaneously. Porous dilation with increasing porosity occurs during tensile
failure and can also occur when damage is caused by inelastic distortional deformation. In addition,
both metals and geological materials can exhibit strain-rate sensitivity.

The experimental data for geological materials often exhibit signi®cant scatter due to natural
inhomogeneity and size dependence of the samples being tested. In this paper analytical forms are
speci®ed for constitutive functions that attempt to model the main e�ects observed. However, it is also
possible to specify many of these functions in tabular form for more ¯exibility in accurately modeling
speci®c experimental data.

Furthermore, since metals become porous when ductile failure occurs with void growth, the
theoretical structure for modeling porosity in geological materials can be used for metals as well.
Similarly, the theoretical structure for plasticity in metals (where the von Mises stress is limited by a
yield stress) is valid for geological materials as well, with the yield stress being a function of di�erent
physical phenomena for each material. Consequently, the objective of the present paper is to present
rather simple comprehensive constitutive equations that model all of the above mentioned physical
phenomena for metals and geological materials. In particular, the present constitutive equations collect
together features of a number of models that have been presented in the literature. Various compromises
are always implemented in the development of a speci®c constitutive equation. Here, an attempt is made
to introduce speci®c modi®cations of these constitutive equations that make minor alterations in the
predicted material response but make major improvements in the robustness of the associated
approximate numerical solutions.

For example, constitutive equations are often formulated in terms of yield, compaction and dilation
surfaces which are algebraic constraints on various parameters. Such constraints can be di�cult to solve
simultaneously and can also lead to numerical sti�ness. Here, instead of proposing a compaction surface
to determine the value of porosity, the porosity is determined by a rate-dependent evolution equation
that forces the porosity to follow a speci®ed functional form. This functional form is chosen to simulate
the main features exhibited by the solution of the compaction surface formulation. However, due to the
simple structure of the evolution equation, the approximate numerical solution becomes quite robust.

The constitutive equations developed in this paper are fully nonlinear, they are thermodynamically
consistent, and they are properly invariant under superposed rigid body motions. They model elastically
isotropic response (with respect to a stress-free reference con®guration) of elastic±viscoplastic materials
that can have evacuated pores, either initially or due to microfracturing. Moreover, the elastic response
is hyperelastic in the sense that the Cauchy stress is related to derivatives of the Helmholtz free energy.
The equations model a large range of material response exhibited by both metals and geological
materials. Also, numerical algorithms are presented that determine the material response at the element
level and which can easily be implemented in standard computer programs for dynamic response of
materials.

An outline of the paper is as follows. Section 2 reviews the basic equations of thermodynamics of
continuous media and Section 3 presents the constitutive equations for the evolution of elastic
distortional deformation including the relaxation e�ects of viscoplasticity. Section 4 presents the
evolution equations for porous dilation and compaction and Section 5 discusses the numerical
integration of these evolution equations at the element level. Finally, Section 6 presents examples which
exhibit the main features of the range of material response predicted by these constitutive equations.

Throughout the paper bold faced symbols are used to denote tensors and I denotes the second-order
unit tensor. Also, a � b denotes the usual scalar product of two vectors a, b and A � B � tr �ABT�
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denotes the scalar product of two second-order tensors A, B. Moreover, BT denotes the transpose of B,
tr A � A � I denotes the trace operation, det (A) denotes the determinant of the tensor A, and the symbol

 denotes the tensor product operator.

2. Basic equations

By way of background it is recalled that X denotes the location of a material point in a ®xed
reference con®guration, x denotes the location of the same material point in the deformed present
con®guration at time t, v � Çx denotes the absolute velocity of the material point, and L � @v=@x denotes
the velocity gradient. Here, and throughout the text a superposed dot is used to denote material time
di�erentiation holding X ®xed.

The constitutive equations are developed using the thermodynamical procedures proposed by Green
and Naghdi (1977, 1978). Within this context, the usual laws of conservation of mass and balances of
linear momentum, angular momentum and energy are supplemented by a balance of entropy which in
local form is written as

r_Z � r�s� x� ÿ div p, �2:1�
where r is the mass per unit present volume, Z is the speci®c (per unit mass) entropy, s is the speci®c
external rate of supply of entropy, x is the speci®c rate of internal production of entropy, p is the
entropy ¯ux per unit present surface area, and div denotes the divergence operator in the present
position x. Also, it is recalled that s and p are related to the absolute temperature y, the speci®c external
rate of heat supply r, and the heat ¯ux vector q that appear in the energy equation by the expressions

s � r

y
, p � q

y
: �2:2�

In general, x can be separated into two parts

ryx � ÿp � g� ryx 0, �2:3�
where g � @y=@x is the temperature gradient with respect to the present position. One part (ÿp � g) is
related to the entropy production due to heat conduction and the other part �ryx 0 � is related to the
entropy production due to material dissipation (Rubin, 1986).

Using (2.1)ÿ(2.3) the rate of heat supplied to the body can be written in the form

rrÿ div q � ry_Z ÿ ryx 0: �2:4�
Thus, the local form of the balance of energy can be expressed as

r
ÿ

_c � Z_y
�
ÿ T � D� ryx 0 � 0 �2:5�

where the speci®c Helmholtz free energy c and the speci®c internal energy e are related by the
expression

c � eÿ yZ: �2:6�
Also, T is the Cauchy stress tensor and D is the symmetric part of the velocity gradient L.

Constitutive assumptions for the quantities�
c, Z, e, T, p, x 0

	
, �2:7�
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are restricted by the usual invariance conditions under superposed rigid body motions and by the
requirements that the balance of angular momentum

TT � T, �2:8�
and the balance of energy (2.5) be satis®ed for all thermomechanical processes. Furthermore, these
constitutive equations are required to satisfy statements of the second law of thermodynamics which
include the condition that heat ¯ows from hot to cold

ÿp � g > 0 for g 6� 0, �2:9�
and the condition that the material dissipation is non-negative

ryx 0 e 0: �2:10�
Instead of introducing a measure of plastic deformation and a de®nition of elastic deformation in

terms of total and plastic deformations, it is possible to follow the work of Eckart (1948), Besseling
(1966), Leonov (1976), and Rubin (1996) and introduce elastic deformation as a primary quantity which
is determined by an evolution equation. In particular, here, it su�ces to consider elastically isotropic
response of an elastic±viscoplastic material that can be characterized by the symmetric tensor Be. Using
the work of Flory (1961), the tensor Be can be separated into a pure measure of elastic dilatation Je and
a pure measure of elastic distortional deformation B 0e by the formulas

Je �
�
det �Be �

�1=2
, B 0e � J ÿ2=3e Be, det

ÿ
B 0e
� � 1: �2:11�

Moreover, motivated by the developments in (Rubin and Chen, 1991; Rubin and Yarin, 1993; Rubin,
1994; Rubin and Attia, 1996), evolution equations can be speci®ed for Je and B 0e in the forms

_J e � Je

�
D � Iÿ Ap

�
,

ÇB
0
e � LB 0e � B 0eLT ÿ 2

3
�D � I�B 0e ÿ Ap, �2:12�

where the scalar Ap and the symmetric tensor Ap need to be speci®ed by constitutive equations that
characterize the relaxation e�ects of inelastic deformations (which can include both plasticity and micro-
fracturing). Furthermore, since B 0e is a unimodular tensor (2.11)3 the quantity Ap must satisfy the
restriction that

Ap � B 0ÿ1e � 0: �2:13�

As a special case, Ap can be taken in the form (Rubin and Attia, 1996)

Ap � Gp

"
B 0e ÿ

(
3

B 0ÿ1e � I

)
I

#
, Gpe0, �2:14�

where Gp is a non-negative function to be speci®ed. This form for Ap ensures that inelastic deformation
causes B 0e to tend to approach I, which is consistent with elastic distortional strain approaching zero.
Also, the evolution eqns (2.12) are integrated subject to initial conditions and it is assumed that Je � 1
and B 0e � I in the reference con®guration. In addition, it is noted that if Ap and Ap vanish then eqns
(2.12) can be integrated to yield Je � J � det �F� and Be � B � FFT, with F � @x=@X being the
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deformation gradient. Therefore, when inelastic e�ects vanish this theory can recover general nonlinear
isotropic elastic response.

For a dry porous material it is common to separate an element of volume dV in the reference
con®guration into solid volume dVs and pore volume dVp and to separate an element of volume dv in
the present con®guration into solid volume dvs and pore volume dvp, such that

dV � dVs � dVp, dv � dvs � dvp: �2:15�
Also, the porosity F in the reference con®guration and the porosity f in the present con®guration are
de®ned by

F � dVp

dV
, f � dvp

dv
, �2:16�

and the total relative volume J and the solid relative volume Js are de®ned by

J � dv

dV
, Js � dvs

dVs

: �2:17�

Next, assuming that changes in porosity are mainly due to inelastic deformations, the value of Je is set
equal to Js so it can be expressed in the form

Je � Js � 1ÿ f
1ÿ F

J: �2:18�

Moreover, since J is determined by the evolution equation

_J � J�D � I�, �2:19�
it follows that the inelastic deformation rate Ap in (2.12)1 can be related to the change in porosity by the
equation

Ap �
_f

1ÿ f
: �2:20�

For elastically isotropic response the Helmholtz free energy c can depend on the elastic deformation
Be only through its three invariants. These invariants include Je and the two independent nontrivial
invariants of the elastic distortional deformation B 0e, which can be written as

a1 � B 0e � I, a2 � B 0e � B 0e: �2:21�
Here, for simplicity, the Helmholtz free energy is taken to be a function only of the variables�

Je, a1, y
	
: �2:22�

In particular, the Helmholtz free energy cs of a nonporous solid is speci®ed by

rs0cs � rs0ĉs1�Je, y� � 1
2G�Je, y� �a1 ÿ 3�, �2:23�

where rs0 is the mass density of the nonporous solid in its reference con®guration and G is a measure of
its shear modulus that can be dependent on dilatation and temperature.

Letting r0 be the mass density of the dry porous solid in its reference con®guration it follows from
(2.15) and (2.16) that
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r0 � �1ÿ F�rs0: �2:24�
Moreover, the conservation of mass of the porous material requires

rJ � r0, �2:25�
so that with the help of (2.18), (2.24) and (2.25) it can be shown that

r � �1ÿ f�rs, rsJe � rs0, rJe � �1ÿ f�rs0, �2:26�
where rs is the current mass density of the solid. Now, for a dry porous media it is assumed that the
Helmholtz free energy c is equal to that of the nonporous solid (see Rubin et al. 1996)

c � cs, �2:27�
and that Z and T depend only on fBe, yg while x 0 also depends on the rates f _f , Gpg. Thus, the balance of
angular momentum (2.8) and the balance of energy (2.5) are satis®ed by the speci®cations

Z � Zs � Zsl � Z 0s, Zs1 � ÿ
@ĉs1

@y
, rs0Z

0
s � ÿ

1

2

@G

@y
�a1 ÿ 3�,

e � c� yZ � esl � e 0s, esl � csl � yZsl, rs0e
0
s �

1

2

�
Gÿ y

@G

@y

�
�a1 ÿ 3�,

T � ÿpI� T 0, T 0 � I � 0,

p � �1ÿ f�ps, ps � psl � p 0s,

psl � ÿrs0

@ ĉsl

@Je

, p 0s � ÿ
1

2

@G

@Je

�a1 ÿ 3�,

T 0 � �1ÿ f�T 0s, T 0s � J ÿ1e GB 00e ,

B 00e �
�

B 0e ÿ
1

3

ÿ
B 0e � I

�
I

�
,

x 0 � x 0f � x 0d, ryx 0f � ÿp
"

_f
1ÿ f

#
,

ryx 0d �
1

2
�1ÿ f�GpJ

ÿ1
e G

"
B 0e � Iÿ

(
9

B 0ÿ1
e � I

)#
, �2:28�

where p is the pressure, T 0 is the deviatoric stress, B 00e is the deviatoric part of B 0e, x
0
f is the speci®c

internal rate of production of entropy due to porous compaction and dilation, and x 0d is the speci®c
internal rate of production of entropy due to inelastic distortional deformation. In the above, Zs, es, ps

and T 0s are functional forms that characterize the response of the nonporous solid �F � f � 0, Je � J �,
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and it is noted that the form (2.28)9 is consistent with the model proposed by Carroll and Holt (1972).
Moreover, for small elastic distortional deformations (Rubin and Attia, 1996) it can be shown that the
rate of dissipation due to distortional deformation (2.28) can be approximated by the expression

ryx 0d � 1
2�1ÿ f�GpJ

ÿ1
e GB 00e � B 00e , �2:29�

which is automatically non-negative.
Many constitutive models for shock waves assume that the pressure ps is determined by a Mie±

Gruneisen equation of state. Following the work in Rubin (1987a) psl is related to esl by a Mie±
Gruneisen-type equation of the form

psl � psH � rsgs�esl ÿ esH �, ev � 1ÿ Je,

psH � rs0D
2ev, esH � psHev

2rs0

, �2:30�

where psH and esH are the pressure and internal energy associated with the Hugoniot of the solid
material, gs is the Gruneisen gamma which controls the temperature dependence of the pressure, ev is a
measure of elastic volumetric compression and D is the shock velocity. Speci®cally, the model used by
Steinberg (1991), suggests that

gs � gs0Je � bsev,

D � Cs0

1ÿ S1ev ÿ S2e2v ÿ S3e3v
, for JeE1,

D2 � C2
s0

Je

�
1ÿ ÿgs0=2

�
ev

� , bs � 0, for Je > 1, �2:31�

where gs0, bs, Cs0, S1, S2, S3 are material constants. Moreover, using (Rubin, 1987a) it can be shown that
the functions

rs0cs1 � rs0csv

��yÿ y0� ÿ y ln �y=y0�
�ÿ �yÿ y0 �f1�Je � � f2�Je�

ps1 � ÿrs0

@cs1

@Je

� �yÿ y0� df1
dJe

ÿ df2
dJe

,

rs0Zs1 � ÿrs0

@cs1

@y
� rs0csv ln �y=y0 � � f1

rs0es1 � rs0csv�yÿ y0� � y0f1 � f2,

�2:32�

are consistent with the constitutive eqns (2.28) and the Mie±Gruneisen form (2.30) provided that f1 and
f2 satisfy the di�erential equations

df1
dJe

� rs0csvgs

Je

, f1�1� � 0,

df2
dJe

�
�
gs

Je

�
f2 � ÿgsy0f1

Je

� rs0gsesH

Je

ÿ psH, f2�1� � 0: �2:33�
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In these equations y0 is the reference value of temperature and csv is the constant speci®c heat at
constant volume. For the special form (2.31) of the Gruneisen gamma the function f1 is given by

f1 � rs0csv

�
bs ln �Je � ÿ

ÿ
gs0 ÿ bs

�
ev

�
, �2:34�

and f2 can be obtained by quadratures.
Also, the functional form of the shear modulus G�Je, y� can be speci®ed (Rubin, 1987a) to include

dependence on pressure ps1 and temperature in the form suggested by Steinberg et al. (1980). For
example, G could be speci®ed by the form

G�Je, y� � G0

�
1� A1J

1=3
e ps1 � A2�yÿ y0�

�
, �2:35�

where G0, A1, A2 are material constants.
With regard to the second law of thermodynamics it can be shown by expressing B 0e in its spectral

form in terms of its eigenvalues and eigenvectors that inelastic distortional deformation is dissipative

ryx 0d e 0, �2:36�
even for large inelastic deformations so that (2.10) places a restriction on the rate of change of porosity

ÿp
"

_f
1ÿ f

#
� ryx 0d e 0: �2:37�

Also, for the usual form of Fourier heat conduction the entropy ¯ux p is given by

p � ÿk
y

g, �2:38�

so that (2.9) requires the heat conduction coe�cient k to be positive.

3. Evolution of plastic distortional deformation

The evolution equation for elastic distortional deformation characterized by (2.12)2 and (2.14)
requires the speci®cation of a functional form for Gp. For metal plasticity it is common to de®ne the
von Mises e�ective stress se by the formula

s2e �
3

2
T 0 � T 0, �3:1�

and to assume that plasticity limits the magnitude of se. In particular, for rate-independent plasticity a
yield function is introduced of the form

g � se ÿ Y

Y0
E 0, �3:2�

where Y is a function that determines the yield strength in uniaxial stress conditions and Y0 is the value
of Y in the reference con®guration. Elastic response corresponds to g < 0 and g � 0 determines the
elastic±plastic boundary. For elastic response the value of Gp vanishes whereas for plastic response the
value of Gp is determined by a consistency condition (e.g. Rubin and Attia, 1996) that requires _g to
vanish during loading.
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For viscoplastic response the quantity Gp in (2.12) is taken to be a function of the von Mises e�ective
stress se and the yield strength Y. For example, within the context of a uni®ed viscoplastic theory
without a yield surface, Gp could be speci®ed by the functional form proposed in (Bodner and Partom,
1972; Bodner, 1987) or by a modi®ed form proposed in (Rubin, 1987b).

In general, the numerical methods developed in (Rubin, 1989; Rubin and Attia, 1996) show that
integration of the evolution equation for determining elastic distortional deformation reduces to the
determination of the zero of a single scalar equation. Usually, iterative methods are required to solve
this equation. However, for the simple overstress model proposed by Swegle and Grady (1985, 1986) Gp

is speci®ed in terms of a material constant Gp0 by the form

Gp � Gp0

�
3G

se

��hse ÿ Yi
Y0

�2
, �3:3�

and this scalar equation can be solved analytically (Rubin, 1990). Moreover, in (3.3) and throughout the
text it is convenient to use the Heaviside function H�x� and the McAuley brackets hxi which are de®ned
by

H�x� �
�
0 for x E 0
1 for x > 0

,

hxi �
�
0 for x < 0
x for x e 0

: �3:4�

The yield strength for metals is also dependent on a hardening variable which for a simpli®ed model
can be related directly to the equivalent plastic strain ep that has accumulated from an annealed state. In
(Rubin and Attia, 1996) it was shown that for small elastic distortional deformations the inelastic
distortional deformation rate associated with (2.12)1 can be approximated by

Dp � 1
2GpAp11

2GpB 00e , �3:5�

so the equivalent plastic strain is determined by the evolution equation

_ep �
h
2
3Dp � Dp

i1=2
, �3:6�

which is integrated subjected to the condition that ep vanishes in the reference con®guration.
Since the model developed here is intended to apply to both metals and geological porous materials, it

is necessary to introduce a number of additional physical phenomena that in¯uence the yield strength Y.
This is done by assuming a simple multiplicative form with Y being given by

Y � Y0F1�ep�F2�p�F3�O�F4�b, p�F5�Je, y�F6�f�F7�o , p�: �3:7�

The function F1 is used to model the e�ects of hardening exhibited by metals and is taken in the form

F1�ep� � k1 � �1ÿ k1� exp
ÿÿ k2ep

�
, k1e1, �3:8�

where k1 and k2 are positive material constants. The value of k1 determines the maximum increase in
yield strength due to hardening and the value of k2 determines how rapidly F1 attains this maximum
value.

The function F2 is used to model the pressure sensitivity of rocks and is taken in the form
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F2�p� � 1� k3hpi
1� k4hpi , �3:9�

where k3 and k4 are additional non-negative material constants. If k4 is positive then F2 will increase to
a maximum value of �1� k3=k4�, otherwise, F2 will increase linearly with pressure. Also, the value of k3
determines how rapidly F2 increases.

The function F3 is used to model the decrease in yield strength of rocks due to distortional
deformation damage and is taken in the form

F3�O� � f�O, k5, k6�, 0 E k5 E 1, k6 > 0, �3:10�

where k5 and k6 are material constants and the function f �O, k5, k6� is speci®ed by

f�O, k5, k6� � 1ÿ k5 exp

�
ÿ k6�1ÿ O�2

O

�
,

f�0, k5, k6� � 1, f�1, k5, k6 � � 1ÿ k5e0,

@ f

@O
�0, k5, k6� � 0,

@ f

@O
�1, k5, k6 � � 0: �3:11�

This function is introduced to smooth out the transition at the onset of damage. In particular, it can be
shown that f �O, k5, k6� has a zero slope at O � 0 and O � 1 and that onset of damage becomes more
rapid as the value of k6 is decreased. For simplicity, the measure of damage O due to distortional
deformation is determined by the formula

O � Min

�
ep

ed

, 1

�
, �3:12�

where the material constant ed determines the value of equivalent plastic strain at which complete
damage has occurred (O � 1 and F3 � 1ÿ k5).

Often geological materials and concrete simulants exhibit a lower value of strength in tension than in
compression. To model this e�ect the yield strength Y is assumed to depend on the Lode angle b which
determines the state of deviatoric stress. Speci®cally, the function, F4 is de®ned by (Rubin and Attia,
1990; Rubin, 1991)

sin �3b� � ÿ27 det �T 0 �
2s3e

, ÿ p
6

E b E p
6
,

a0 � 2Q2
1�Q2 ÿ 1�, a1 �

���
3
p

Q2 � 2Q1�Q2 ÿ 1�, a2 � Q2,

a �
ÿa1 �

����������������������
a21 ÿ 4a2a0

q
2a2

, b � �2Q1 � a�2ÿ3,

b0 � ÿ1
4

ÿ
3� bÿ a2

�
, b1 � a

�
cos �b� ÿ a sin �b��,
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b2 �
�
cos �b� ÿ a sin �b��2�b sin2 �b�,

F4�b, p� �
ÿb1 �

����������������������
b21 ÿ 4b2b0

q
2b2

: �3:13�

In these formulas Q1�p� and Q2�p� are functions of pressure p which can be related to the strength for
stress states of pure torsion (TOR) and triaxial extension (TXE) (which includes uniaxial tension). In
particular, it can be shown that

F4 � 1 for TXC with b � p
6
,

F4 � Q1 for TOR with b � 0,

F4 � Q2 for TXE with b � ÿp
6
: �3:14�

For the simple case of a von Mises yield surface the values of Q1 and Q2 are equal to unity

Q1 � Q2 � 1 for von Mises, �3:15�

whereas for a Mohr±Coulomb type yield surface the value of Q1 is related to Q2 by the formula

Q1 �
���
3
p

Q2

1�Q2
: �3:16�

Moreover, for the Tresca condition, Q2 equals unity with Q1 being given by (3.16).
To motivate an expression for Q2 it is of interest to consider the case of uniaxial stress in tension

(TXE) from the reference con®guration (ep � O � 0) for which

se � Y � Q2Y0, p � ÿY
3
: �3:17�

Now, it is assumed that tensile failure initiates and porosity tends to increase when the pressure attains
the negative value (ÿpd). Thus, since (3.17) indicates that both the pressure and the yield strength
remain proportional to each other in uniaxial stress, it is reasonable to specify Q2 by the form

Q2 � 3pd

Y0
: �3:18�

This form allows the value of pd to be directly related to experimental data for failure in uniaxial
tension.

For relatively low pressure it is reasonable to consider a Mohr±Coulomb type yield surface with Q1

speci®ed by (3.16). However, for high pressures it is expected that a Mises type yield surface is more
appropriate. Therefore, the functions Q1 and Q2 are speci®ed to be pressure dependent by the forms
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Q1� 1� �Q10 ÿ 1�Q�p�, Q10 �
���
3
p

Q20

1�Q20
,

Q2 � 1� �Q20 ÿ 1�Q�p�, Q20 � 3pd

Y0
,

Q�p� � exp � ÿ qh3p=Y0 ÿ 1i�, Qe0,

�3:19�

where q is a material constant. These functions model a smooth transition from Mohr±Coulomb
behavior for p E Y0=3 to Mises behavior for p� Y0=3 (and q>0).
The function F5�Je, y� in (3.7) can be speci®ed in a form similar to that proposed by Steinberg et al.

(1980) (with p replaced by ps1 here) to model the pressure and temperature dependence of the yield
strength exhibited by metals. For example, the function F5 could be speci®ed by

F5�Je, y� � G�Je, y�
G0

, �3:20�

where the shear modulus G was de®ned in (2.35).
The function F6�f� in (3.7) is speci®ed by

F6�f� � 1ÿ f
1ÿ F

, �3:21�

which incorporates the feature of the Gurson model (Gurson, 1977) that the yield strength for zero
pressure vanishes as the porosity approaches unity. Also, the function F7 models the e�ect of damage
due to porous compaction and dilation and it is speci®ed by

F7 � 1 for p > ÿpd,

F7 � f�o , k7, k8� for p E ÿ pd, 0 E k7 < 1, k8 > 0, �3:22�
where f �o , k7, k8� is the function de®ned by (3.11), with k7 and k8 being material constants, pd being a
function to be speci®ed later, and o being a measure of damage due to porosity changes which is also
speci®ed later.

The analytical functional forms for F1±F7 in (3.7) have been speci®ed to provide reasonable response
for many materials. However, it is also possible to specify these functions in tabular form for more
¯exibility in accurately modeling speci®c experimental data.

4. Evolution of porosity

In general, the second law of thermodynamics (2.37) places restrictions on the evolution equation for
porosity and plasticity. Often the ®rst term in (2.37) is non-negative with porous compaction ( _f < 0)
occurring for positive pressure and porous dilation ( _f > 0) occurring for negative pressure. However,
experiments on glass (Glenn et al., 1990) indicate that dynamic loading can cause microfracturing that
tends to increase the porosity of the damaged glass even when the pressure has remained positive. The
constitutive equations discussed in this section attempt to model all of these situations.

In order to propose constitutive equations for the evolution of porosity it is convenient to de®ne the
minimum value fmin and maximum value fmax of f for all time

fmin � Min
�
f
�
, fmax � Max

�
f
�
: �4:1�
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Now, consider the case of a brittle material-like glass which initially has zero porosity. Such a material
can break under tension creating signi®cant local porosity. However, it can also be damaged by
distortional deformation under compression or tension causing cloudiness due to creation of porosity at
fractured surfaces. Here, it is assumed that when the material is damaged by distortional deformation
the porosity tends to increase to the value f�. This response is modeled by the constitutive equation

_f � �1ÿ f�
"

md

ÿ
ryx 0d

�
Max �p, p��

#
H
ÿ
f� ÿ f

�
e 0, for fmax < f� and p > ÿpd: �4:2�

where md, f
� and p� are material constants, pd is a positive function to be speci®ed, and the term

Max (p, p�) is introduced instead of the pressure p to eliminate the singularity that would occur at zero
pressure. The Heaviside function in (4.2) causes the porosity to remain less than f�, which is a measure
of the mis®t of fractured pieces of material under compression. Moreover, the functional form was
chosen so that the second law of thermodynamics (2.37) will be satis®ed provided thatÿ

ryx 0d
��
1ÿ mdp

Max �p, p��
�

e 0, 0 E md E 1, �4:3�

with the maximum porous dilation occurring when md equals unity. Also, it follows that if f� vanishes
then porous dilatation due to distortional deformation is not possible.

Models for dynamic failure of solids have been reviewed by Curran et al. (1987). For elastic±perfectly
plastic metals the Gurson model (Gurson, 1977) has been used to determine nucleation, growth and
compaction of voids. A generalization of this model (Johnson and Addessio, 1988) has also been used to
model the spallation process in dynamic impact experiments. For porous geological materials, porous
compaction and dilation is usually caused by creation, opening and closing of microfractures. Although
these mechanisms are di�erent from those that occur in metals, both materials are modeled here using
the same equations.

The Gurson model (Gurson, 1977) introduces an algebraic equation of stress and porosity which
serves as a yield function that must be solved either in rate form or iteratively to determine the material
response. Since the dependence of the pressure on porosity can be quite nonlinear, the solution of
equations of this type can pose numerical di�culties. In order to eliminate many of these numerical
di�culties, the constitutive equations for porosity proposed here are formulated as rate-dependent
evolution equations like (4.2).

Speci®cally, additional evolution equations for porous compaction are given by

_f � 0 for fmax e f� and ÿ pd E p E 0,

_f � ÿ�1ÿ f�hÿD � IiHÿfÿ f�min

�
E 0 for fmax e f� and 0 E p E pc,

_f � ÿGchfÿ f�c iE 0 for fmax e f� and p > pc, �4:4�

and the evolution equation for porous dilation when the pressure is more negative than (ÿpd) is given
by

_f � Gd

"
1�

�
f�d
fs

�m
#�hf�d ÿ fi

fs

�n
e 0 for p E ÿ pd: �4:5�
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In addition, a measure of damage o due to porous compaction and dilation is de®ned by the evolution
equation

_o � 1

ev

j _f j
�1ÿ f�H�1ÿ o �, �4:6�

which is integrated subject to the condition that o vanishes in the reference con®guration. Also, the
Heaviside function ensures that o never is greater than unity.

The evolution eqns (4.2), (4.4)±(4.6) introduce ten non-negative constants
fmd, f

�, p�, Gc, pc, Gd, fs, m, n, evg and four functions ff�c , f�min, f
�
d, pdg. For convenience the range of

applicability of these equations are summarized in Table 1. An important feature of eqns (4.2), (4.4) and
(4.5) is that they tend to cause the porosity f to approach values determined by speci®ed functions (e.g.
f�, f�c , f

�
min, f

�
d). Also, the rate at which f approaches these values is determined by (md, Gc, Gd). Thus,

the main features of the material response can be ensured by proper choice of the constant f� and the
functions �f�c , f�min, f

�
d�.

For example, when eqn (4.4)3 is active the porosity tends to decrease to the value f�c . Consequently,
the function f�c can be tabulated to match experimental data for compaction. Alternatively, it is possible
to specify the function by an approximate analytical form.

In order to propose analytical forms for some of these functions it is noted that the magnitude of the
pressure at the onset of compaction and during expansion is rather low. Speci®cally, for hydrostatic
�a1 � 3� expansion �Je > 1� eqns (2.28)9,10, (2.30) and (2.31) yield

p � �1ÿ f�
�
rs0C

2
s0

�
1

Je

ÿ 1

�
� rs0gs0es1

�
: �4:7�

Moreover, to motivate some of the functional forms this expression for pressure is assumed to hold also
for small values of compression �ev � 1�. During compaction from the reference state (with no
macroscopic distortional deformation, ryx 0d � 0), the porosity remains constant �f � F� until the
pressure reaches the crush pressure pc. This means that Je � J and the value Jc of J associated with the
onset of compaction is obtained by solving (4.7) to deduce that

1

Jc
� 1� pc

�1ÿ F�rs0C
2
s0

, �4:8�

where thermal e�ects have been neglected �gs0 � 0�. Moreover, if further compression were to keep the
pressure p in (4.7) equal to the constant value pc, then f would be determined by the expression

Table 1

Summary of the equations for porous compaction and dilation

Range of pressure Range of fmax Equation Type of deformation

p Eÿ pd Any value (4.5) Porous dilation

ÿpd < p < 0 fmax< f� (4.2) Porous dilation

f�Efmax (4.4)1 Constant porosity

0 E p E pc fmax< f� (4.2) Porous dilation

f�E fmax (4.4)2 Porous compaction

pc < p fmax< f� (4.2) Porous dilation

f�Efmax (4.4)3 Porous compaction

M.B. Rubin et al. / International Journal of Solids and Structures 37 (2000) 1841±18711858



f � Fÿ �1ÿ F�
�
1

J
ÿ 1

Jc

�
, for p � pc: �4:9�

However, the pressure typically increases during compaction. Also, it is of interest to include the e�ect
of shear enhanced compaction that is exhibited by cap models of the type reviewed in (Chen and Baladi,
1985).

To this end, consider the function f��c de®ned by

f��c �Fÿ c1�1ÿ F�
�
1

J
ÿ 1

Jc

�
F8 for

1

Jc

E 1

J
E c2,

f��c � f2 exp

"
ÿ c1�1ÿ F�F8

f2

�
1

J
ÿ c2

�#
for c2<

1

J
,

f2 �Fÿ c1�1ÿ F�
�
c2 ÿ 1

Jc

�
F8,

F8�se, Y� �
�
1� c3

�
1

c1
ÿ 1

��
ÿ c3

�
1

c1
ÿ 1

��
Max

�
0, 1ÿ �se=Y�2

	�c4
,

0Ec1E1,
1

Jc
Ec2E

1

Jc
� F

c1�1ÿ F�F8
,

0Ec3E1, c4e0 �4:10�
where the functions f��c are chosen to be continuous and have continuous ®rst derivatives at the
transition points. The material constants c1 and c2 control the shape of the pressure curve during
compaction and the function F8 controls shear enhanced compaction with the material constants fc3, c4g.
The functional form (4.10) for 1=JEc2 is similar to (4.9) with porosity being a linear function of 1=J.
Therefore, for c1 � 0 the material response is sti� with porosity remaining constant, whereas for c1 � 1
the material response is soft with pressure remaining nearly constant as porosity decreases. In particular,
it can be shown by replacing f in (4.7) by f��c and ignoring energy e�ects �gs0 � 0� and shear enhanced
compaction �F8 � 1� that at the onset of compaction �J � Jc�

dp

dJ
� ÿrs0C

2
s0
�1ÿ F��1ÿ c1�

J 2
c

, for J � Jc, f � f��c , F8 � 1: �4:11�

Thus, it follows that the slope of the pressure during compaction will vanish when c1 equals unity.
Moreover, for c1 < 1 and c3 > 0, the value of f��c decreases as deviatoric stress se increases. For c4 > 0
the derivative of F8 with respect to se vanishes when se vanishes, which is consistent with a spherical
cap model (Chen and Baladi, 1985). Also, since F8 is taken to be a function of se=Y it automatically
incorporates the e�ects of hardening, pressure sensitivity, damage, Lode angle and porosity on shear
enhanced compaction [see (3.7)].

Next, the functions f�c and f�min are de®ned by the expressions

f�c � Max
�
f��c , f�

�
, f�min � Max

�
fmin, f

�� for fmaxef�: �4:12�

Using these functions the evolution eqns (4.2), (4.4) and (4.5) predict the following features: for
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fmax < f� porous dilation can occur due to distortional deformation when the pressure is greater than
(ÿpd) but porous compaction cannot occur; for fmaxef� porous compaction can occur when the
pressure is non-negative; and porous dilation can occur directly due to tensile failure when the pressure
is less than (ÿpd) for any value of fmax. Moreover, whenever the value of porosity f becomes greater
than f� then porous dilation due to distortional deformation ceases and porous compaction can only
reduce the porosity back to the value f�, which is the minimum value for a fully fractured material.

The eqn (4.4)2 is used to simulate fracture closure with negligible increase in pressure. In particular, if
the material has been expanded, with f greater than f�min, and if the material is being compressed
(D � I < 0), then when the pressure becomes non-negative compaction ( _f < 0) will occur with

_f � �1ÿ f��D � I�: �4:13�
Moreover, it can be seen from (2.12)1 and (2.20) that (4.13) causes Je to remain constant. This means
that fractures that have been opened (f > f�min) will tend to close with negligible pressure until f attains
the minimum value f�min. Also, eqn (4.4)1 indicates elastic response in tension (p < 0) until the pressure
becomes more negative than a dilation value (ÿpd).

Eqn (4.5) indicates that dilation ( _f > 0) will occur with the porosity f increasing to the value f�d
when the pressure is less than the value (ÿpd). It is expected that the value of pd will decrease towards
zero as damage evolves. However, the value of pd is required to remain positive. Thus, for example, pd

can be taken to have the simple form

pd � pd0f�o , k7, k8�, �4:14�
where pd0 is a material constant and the function f �o , k7, k8� is speci®ed (3.11). This causes the
magnitude of the pressure and the yield strength to be reduced by the same factor. Also, it is expected
that k7 will have a value very close to unity in order to simulate near complete loss of strength in
tension for both pressure and yield strength.

In order to motivate a functional form for f�d it is noted that during porous dilation with negative
pressure (4.5) the material tends to expand (Je > 1) so that in the absence of distortion (a1 � 3) the
pressure is given by the expression (4.7). Thus, a functional form for f�d can be speci®ed by setting p �
ÿpd and f � f�d in (4.7) and solving the equation for f�d to obtain

f�d � 1ÿ
1ÿ F
J
� pd

rs0C
2
s0

1ÿ gs0es1

C2
s0

�4:15�

Note that for a constant value of J, the value of f�d decreases and the value of Je increases as the energy
increases due to heating associated with material dissipation.

5. Numerical approximations

In standard wave propagation computer codes the equations of motion and the energy equation are
integrated to determine the deformation and internal energy of each element. Then, the constitutive
equations are integrated in each element over the time step to determine the stress ®eld that is used to
specify the equations of motion for the next time step. Also, if the constitutive equations are
hyperelastic, like the ones proposed here, then the constitutive equation for internal energy (2.28) can be
solved for the temperature.
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In shock wave applications the value of pressure usually dominates that of the deviatoric stress.
Therefore, the detailed model described by (2.30)±(2.35) is used to model full thermomechanical
coupling in the constitutive equation for pressure. Here, attention is focused on robust numerical
integration of the evolution equations for porosity and elastic distortional deformations. For simplicity,
the common assumption is used that the equations for porosity can be integrated using estimates of the
elastic distortional deformation. Then, the equations for elastic distortional deformation can be
integrated using the predicted value of porosity. Also, attention will be focused on the case of dynamic
loading which is adiabatic so that the e�ect of heat conduction is neglected [k � 0 in (2.38)].

At the beginning t � t1 of a typical time step (t1, t2) the values of all relevant quantities are known.
The numerical scheme estimates the value of all quantities at the end of the time step t � t2 by assuming
that the velocity gradient L is constant over the time interval. For convenience, the values of the
quantities fJ, y, f, fmax, f

�
min, p, pd, se, Y, o , B 0e, g 0e, ep, ryx

0
dg at beginning (t � t1) of the time step are

denoted by�
J1, y1, f1, fmax1, f

�
min1, p1, pd1, se1, Y1, o 1, B 0e1, g 0e1, ep1, ryx

0
d1

	
at t � t1, �5:1�

and the values of the same quantities at the end (t � t2) of the time step are denoted by�
J2, y2, f2, fmax2, f

�
min2, p2, pd2, se2, Y2, o 2, B 0e2, g 0e2, ep2, ryx

0
d2

	
at t � t2: �5:2�

Also, the time interval is denoted by

Dt � t2 ÿ t1: �5:3�
Since the velocity gradient L is assumed to be constant over the time step the evolution eqn (2.19)

yields

J2 � J1 exp �DtD � I�: �5:4�
Next, values of the quantities ff��c , f�c , f

�
dg are determined using the functions (4.10), (4.12)1, (4.15), the

new value J2 and the old values of all other independent variables

f��c �J2, se1, Y1�, f�c �J2, se1, Y1�, f�d�J2, y1, pd1�: �5:5�
Thus, with the help of (5.5) and the old values (5.1) it can be determined which one of the evolution
eqns (4.2), (4.4) or (4.5) is relevant. (In this regard, it should be mentioned that the critical value of
pressure used to distinguish between these evolution equations was modi®ed by subtracting a small
value from pd in order to eliminate numerical oscillations that occurred for small values of pd.) If the
relevant one of these equations predicts zero change in porosity then f2 is set equal to f1. Otherwise,
one of these evolution equations will be relevant and predict nonzero change in porosity. Thus, when f
does not remain constant then the value of f2 is determined by one of the following expressions

f2 � Min

"
1ÿ ÿ1ÿ f1

�
exp

(
ÿ Dt

"
md

ÿ
ryx 0d1

�
Max �p1, p��

#)
, f�

#
for �4:2�,

f2 � Max

�
1ÿ ÿ1ÿ f1

�J1
J2

, f�min1

�
for �4:4�2,

f2 � f�c �
ÿ
f1 ÿ f�c

�
exp

�ÿ DtGc

	
for �4:4�3,
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f2 � f�d ÿ
h
Max

n
0,
ÿ
f�d ÿ f1

��1ÿn�ÿ�1ÿ n�GdDt
n
1� ÿf�d=fs

�mo
=fn

s

oi1=�1ÿn�
for �4:5� with n < 1,

f2 � f�d ÿ
ÿ
f�d ÿ f1

�
exp

h
ÿ GdDt

n
1� ÿf�d=fs

�mo
=fs

i
for �4:5� with n � 1,

f2 � f�d ÿ
ÿ
f�d ÿ f1

�h
1� �nÿ 1�GdDt

n
1� ÿf�d=fs

�moÿf�d ÿ f1

��nÿ1�
=fn

s

i1=�nÿ1�
for �4:5� with n > 1,

�5:6�

The expressions (5.6) are robust solutions of the evolution equations because they represent analytical
solutions for f when all the other coe�cients in the equations are held constant. Moreover, once f2 has
been determined then eqn (4.6) can be integrated to deduce that

o2 � Min

"
o1 � 1

ev

�����ln
�
1ÿ f1

1ÿ f2

������, 1
#
: �5:7�

Also, notice from (5.6) that large values of Gc and Gd cause f to follow f�c during compaction and f�d
during dilation. On the other hand, the values of Gc and Gd can be used to match increases in
compaction strength and dilation strength that can be observed in high strain rate experiments.

Once the value of f2 has been determined it is possible to use the expressions (2.18) and (5.4) to
obtain the value Je2 or Je. Moreover, the value es2 of es can be determined by estimating the e�ect of the
mechanical power T � D acting in the energy equation during the time step. Then, the value p2 of p can
be determined by the eqns (2.28)9 and (2.32) using the value Je2. Also, the constitutive equations for es

can be used to obtain the value y2 of the temperature y.
Next, attention is focused on determining the response to distortional deformation. In this regard, it

was shown in (Rubin, 1989; Rubin and Attia, 1996) that the evolution eqn (2.12)2 for elastic distortional
deformation with the speci®cations (2.14) can be integrated numerically over the time step (t1, t2) by ®rst
calculating an elastic trial stress T 0� and von Mises stress s�e , such that

B 0�e � B 0e1 �
�t2
t1

�
LB 0e � B 0eLT ÿ 2

3
�D � I�B 0e

�
dt,

T 0� � J ÿ1e2

ÿ
1ÿ f2

�
G�Je2; y1�B 00�e , B 00�e � B 0 �e ÿ

1

3

ÿ
B 0 �e � I

�
I,

s�2e �
3

2
T 0� � T 0�: �5:8�

Now, the radial return method (Wilkins, 1964) is used to determine values of quantities at the end of
the time step

B 00e2 � lB 00 �e , T 02 � lT 0�, se2 � ls�e : �5:9�
Here, l is a scale factor that is determined by satisfying the evolution eqn (2.12)2 implicitly at the end of
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the time step (Rubin, 1989)

�1ÿ l� � DtGp2l, �5:10�
where Gp2 is the value of the function Gp evaluated at the end of the time step.

For rate-independent plasticity with the yield surface (3.2), plastic deformation rate causes the value
of se to remain equal to Y during loading. For this case l is determined by the conditions (Wilkins,
1964)

l � 1 for s�e < Y �,

l � Y �

s�e
for s�e e Y �, �5:11�

where Y � is an estimate of the value of yield strength during the time step. Speci®cally, since the Lode
angle b is una�ected by the magnitude of T 0 the value b2 can be determined using (3.13) with T 0

replaced by T 0�. Thus, the estimate Y � can be speci®ed by

Y � � Y0F1�ep1 �F2�p2�F3�O1�F4

ÿ
b2
�
F5�Je2, y1�F6

ÿ
f2

�
F7�o2, p2�: �5:12�

For general rate-dependent viscoplasticity the eqn (5.10) must be solved iteratively to determine the
value of l. However, when Gp is speci®ed by (3.3) and s�eeY � then eqn (5.10) becomes a quadratic
equation that can be solved analytically for l. To this end, it is convenient to introduce an auxiliary
parameter �l by the expression

�l � ls�e ÿ Y �

Y0
, �5:13�

so that the value of l is determined by equations

d0 � ÿ1� Y �

s�e
, d1 � Y0

s�e
, d2 �

ÿ
DtGp0

��3G
s�e

�
,

d2 �l
2 � d1 �l � d0 � 0, �l � ÿd1 �

ÿ
d2
1 ÿ 4d2d0

�1=2
2d2

,

l � 1 for s�e E Y �, l �
�lY0 � Y �

s�e
for s�e > Y �: �5:14�

Moreover, it can be shown that when Gp0 is quite large then the solution (5.14) approaches the rate-
independent solution (5.11).

Once the value of l has been determined by either of eqns (5.11) or (5.14), then the deviatoric stress is
determined by (5.9) and the equivalent plastic strain ep can be updated by using (3.5), (3.6), (5.8) and
(5.10) to obtain an expression similar to that developed in (Rubin and Attia, 1996)

ep2 � ep1 � �1ÿ l� s�e
3Jÿ1e2 �1ÿ f2�G�Je2; y1�

: �5:15�

Then, the value Y2 of the yield strength can be determined by the eqn (3.7) with this updated value ep2.
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Obviously, di�erent functional forms for hardening F1�ep� and damage F3�O� in (3.7) can be used to
improve the comparison of the yield strength with experimental data without signi®cant changes in the
numerical algorithm.

Next, the value of B 0e2 is determined using the equation

B 0e2 � B 00e2 � 1
3a12I, a12 � B 0e2 � I: �5:16�

However, since B 0e2 is a unimodular tensor (det B 0e2 � 1) it follows that a12 becomes the root of the cubic
equation�

a12
3

�3
ÿ1
2

ÿ
B 00e2 � B 00e2

��a12
3

�
ÿ ÿ1ÿ det B 00e2

� � 0: �5:17�

The relevant solution of this equation is given in the appendix of (Rubin and Attia, 1996). Moreover,
with the help of (2.29) and (5.10) it can be shown that the rate of material dissipation becomes

ryx 0d2 �
1

2

ÿ
1ÿ f2

�
Jÿ1e2 G

�
l�1ÿ l�

Dt

�
B 00 �e � B 00 �e : �5:18�

Finally, using the updated values of pressure and deviatoric stress it is possible to improve the estimate
of the internal energy e2.

6. Examples

The objective of this section is to present a number of examples which demonstrate the in¯uence of
various material constants in the proposed constitutive model. Some of the material constants are
applicable to geological type materials while others are applicable to metals. Therefore, it is not possible
to explore the in¯uence of all material constants on the response of a single real material. For this
reason attention will be focused on two types of materials. Also, some of the material constants for each
of these materials are not known from experimental data and are speci®ed here mainly to exhibit the
range of material response predicted by the present constitutive model. Moreover, for simplicity the
shear modulus G is taken to be constant (A1 � A2 � 0) and the e�ect of heat conduction is ignored with
k vanishing.

In the examples that follow it is desirable to consider three di�erent types of deformations. To this
end, let the vectors X and x be referred to a ®xed set of rectangular Cartesian base vectors ei. For pure
dilatational deformation the components of these vectors, the velocity gradient L, the total axial
Lagrangian strain E11 and total volumetric strain Ev are given by

x1 � exp �Dvt�X1, x2 � exp �Dvt�X2, x3 � exp �Dvt�X3,

L � DvI, E11 � 1
2

�
exp �2Dvt� ÿ 1

�
,

Ev � Jÿ 1 � exp �3Dvt� ÿ 1,

�6:1�

where 3Dv is the constant volumetric deformation rate. For simple shear, which is a purely distortional
deformation, the motion and deformation quantities are given by

x1 � X1 � ktX2, x2 � X2, x3 � X3,

L � k�e1 
 e2�, E12 � 1
2kt,

�6:2�
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where k is the constant shear rate and E12 is the total Lagrangian shear strain. Also, for uniaxial strain,
which combines dilatational and distortional deformations, the deformation quantities are given by

x1 � exp �Dut�X1, x2 � X2, x3 � X3,

L� Du�e1 
 e1�, E11 � 1
2

�
exp �2Dut� ÿ 1

�
,

Ev � Jÿ 1 � exp �Dut� ÿ 1,

�6:3�

where Du is the constant rate of extension in the e1 direction and E11 is the total Lagrangian axial
strain.

The material constants used in the simulations of a geological material and a metal are summarized in
Table 2. These constants are used in all simulations except for those where the e�ect of varying a
speci®c constant are explored. The values of fF, rs0, Cs0, S, gs0g were determined by the work of Heard
et al. (1973) on Mt Helen Tu� and Ree (1976) on silicon dioxide and they correspond to the low
pressure values that were recorded in (Rubin et al., 1996). Also, the values of fG, Y0, k3, k4g were
determined by the work of Heard et al. (1973). Figs. 1 and 2 show the response to pure dilatational
compaction (6.1) with

Dv �21:0� 10ÿ3sÿ1: �6:4�
For these calculations the values of fpc, c1, c2g in Table 2 were determined to provide a best ®t with the
experimental compaction curve for dry Tu� (Heard et al., 1973). Fig. 1 exhibits the in¯uence of the
material constant c1 and Fig. 2 exhibits the in¯uence of the material constant c2 on the shape of the

Table 2

Material constants used in the simulations of a geological material and a metal

Parameter Equation Geological

material

Metal Parameter Equation Geological

material

Metal

F (2.16) 0.38 0.0 ed (3.12) 0.5 Ð

rs0 (Mg/m3) (2.24) 2.32 2.7 Q10 (3.19)
���
3
p

Q20=�1�Q20� 1.0

Cs0 (km/s) (2.31) 3.94 5.38 Q20 (3.19) 3pd=Y0 1.0

S1 (2.31) 1.98 1.337 q (3.19) 0.5 Ð

S2 (2.31) 0.0 0.0 k7 (3.22) 0.99 0.99

S3 (2.31) 0.0 0.0 k8 (3.22) 1.0 1.0

gs0 (2.31) 0.69 2.0 f� (4.2) 0.01 0.0

b (2.31) 0.0 0.0 md (4.2) 1.0 0.0

csv(J/Kg/K) (2.32) 1.247 � 103 2.1 � 103 p� (GPa) (4.2) 0.001 Ð

y0 (2.32) 300.0 300.0 pc (GPa) (4.4) 0.03 Ð

G0 (GPa) (2.35) 7.1 29.3 Gc (sÿ1) (4.4) 1.0 � 107 1.0 � 108

A1�GPaÿ1� (2.35) 0.0 0.0 Gd (Sÿ1) (4.5) 3.0 � 103 2.7 � 103

A2�K ÿ1� (2.35) 0.0 0.0 fs (4.5) 0.001 0.01

k(J/s/K/m2) (2.38) 0.0 0.0 m (4.5) 12.0 12.8

GP0 (sÿ1) (3.3) 1 1.43 � 106 n (4.5) 1.0 1.0

2.0

Y0 (GPa) (3.3) 0.08 0.213 ev (4.6) 0.02 0.02

k1 (3.8) 1.0 1.55 c1 (4.10) 0.925 Ð

k2 (3.8) Ð 7.05 � 102 c2 (4.10) 1.29 Ð

k3�GPaÿ1� (3.9) 10.0 0.0 c3 (4.10) 0.5 Ð

k4�GPaÿ1� (3.9) 1.3 Ð c4 (4.10) 0.5 Ð

k5 (3.10) 0.5 0.0 pd0�GPa� (4.14) 0.01 0.11

k6 (3.10) 1.0 Ð
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predicted compaction curves. Moreover, it is noted that the simple model presented here does not

exhibit the added elastic compressibility of porosity (that was included in the more complicated model

of Rubin et al., 1996) because porosity remains nearly constant during unloading. This causes the elastic

loading and unloading curves to be sti�er than the experimental data. Fig. 3 shows that when the

deformation rate Dv becomes higher than about 104 sÿ1 the model predicts signi®cant rate sensitivity

with increased values of pressure and porosity during compaction.

For geological materials the e�ect of hardening due to distortional deformation has been omitted so

that k1 � 1 in Table 2. Fig. 4 compares the response to pure dilatational deformation (6.4) with that to

Fig. 1. Pure dilatational compression of a geological material. (a) Comparison of the theoretical compaction curve [for (6.4)] with

experimental data for Mt Helen Tu�. (b) Associated values of porosity for the simulations. The in¯uence of changes in the material

constant c1 are also shown.

Fig. 2. Pure dilatational compression of a geological material. (a) Comparison of the theoretical compaction curve [for (6.4)] with

experimental data for Mt Helen Tu�. (b) Associated values of porosity for the simulations. The in¯uence of changes in the material

constant c2 are also shown.

Fig. 3. Pure dilatational compression of a geological material. The curves show the e�ect of the rate Dv of dilatational compaction.

M.B. Rubin et al. / International Journal of Solids and Structures 37 (2000) 1841±18711866



uniaxial strain. For these simulations the deformation rate Du is speci®ed by

Du �23:0� 10ÿ3 sÿ1, �6:5�

in order to cause the same volumetric deformation rate (6.4) as that associated with pure dilatational
deformation. These ®gures show that shear enhanced compaction causes the pressure to be lower and
the porosity to be smaller for uniaxial strain than for pure dilatational compression. Notice also that for
c3 � 1 the e�ect of shear enhanced compaction is maximized and the response is similar to that
predicted by taking c1 � 1, with the pressure remaining nearly constant during compaction.
Furthermore, it is noted that the uniaxial response includes a slight pressure increase due to heating
associated with plastic distortional deformation which is in addition to the heating associated with
porous compaction.

Next, the e�ect of porous dilation under tension is exhibited. The values of Gd, cd, n in Table 2 cause
the porosity to closely follow f�d during porous dilation. Fig. 5 shows the response to pure dilatational
deformation with Dv given by (6.4). The dotted lines show compaction followed by dilation (cycle abcd)
and the solid lines show dilation followed by compaction (cycle aefb). Notice that the magnitude of the
pressure at which dilation ®rst occurs in cycle (abcd) is smaller than that in cycle (aefb) because damage
due to porosity causes the magnitude of pd to decrease in cycle (abcd) as the material is compacted.
Also, notice that the pressure remains nearly zero during recompression in cycle (aefd) until the porosity
attains the value fmin then it increases elastically until it reaches the compaction pressure pc.

Fig. 4. Comparison of the response of a geological material to pure dilatational compression [for (6.4)] with that to uniaxial strain

[for (6.5)] showing the e�ect of shear enhanced compaction.

Fig. 5. Cycles of pure dilatational deformation [for (6.4)] of a geological material. The dotted lines show porous compaction fol-

lowed by dilation (cycle abcd) and the solid lines show dilation followed by compaction (cycle aefb).
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To explore the e�ect of porous dilation due to distortional deformation (4.2), the same material
parameters are used except that F is taken to vanish and thermal e�ects are neglected

F � 0, gs0 � 0, �6:6�

so that the pressure becomes a function of J and f only. Fig. 6 shows the response to a cycle of simple
shear with the shear rate speci®ed by

k �21:0� 10ÿ3 sÿ1: �6:7�

In particular, notice that even though the volume remains constant during simple shear, both the
pressure and the porosity increase due to distortional deformation.

Fig. 7 shows the same e�ect occurring in a cycle of uniaxial compression with Du given by (6.5). For
comparison, Fig. 7 also shows the response for the value f� � 0:2 since the experiments of (Glenn et al.,
1990) on glass indicated increases in porosity up to 0.2 after shock loading. Fig. 7(a) shows that the
pressure upon unloading is higher than that upon loading because porous dilation during loading is
caused by distortional deformation. This is a similar response to that predicted by the model of Glenn
et al. (1990). For f� � 0:01 the porosity saturates at the value f � 0:01 and then the material unloads
elastically until the pressure reaches the value (ÿpd) at which time dilation occurs due to negative
pressure. However, for f� � 0:2 the porosity continues to dilate during unloading at positive pressure
since for this range of strain f remains smaller than f�. Although Fig. 7(a) indicates that the pressure

Fig. 6. Cycles of simple shear [for (6.7)] of a geological material (with F � 0 and gs0 � 0) showing the e�ect of porous dilation due

to distortional deformation.

Fig. 7. A cycle of uniaxial compression [for (6.5)] of a geological material (with F � 0 and gs0 � 0) showing porous dilation due to

distortional deformation for two values of f�.
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does negative work in the cycle, it should be remembered that the second law of thermodynamics (2.37)
ensures that the dissipation due to distortional deformation compensates this negative work.

For metals it is common to consider a simple form for the yield strength that ignores the e�ects of
pressure hardening, distortional damage and the Lode angle, which leads to the values of
fk1, k3, k5, Q10, Q20g given in Table 2. Also the initial porosity is assumed to vanish and the e�ect of
porous dilation due to distortional deformation is eliminated, which yields the values of fF, f�g. Next,
using the work in Rubin (1990) it can be shown that

Gp0 �
�
2
���
2
p

9

�
A 0Y2

0, k1 � Y 01
Y0

, k2 �
3K

2Y0

Y 01
Y0
ÿ 1

, �6:8�

where fA 0, Y0,Y
0
1, K g are constants that are given in Swegle and Grady (1985) (here, for clarity the

symbol Y 01 is used instead of Y1 in their paper). Moreover, in their work (Swegle and Grady, 1985)
values for these constants as well as for frs0, Cs0, S1, gs0g and Poisson's ratio v are given for a number of
materials with the shear modulus G0 being approximated by the expression

G0 � 3rs0C
2
s0
�1ÿ 2v�

2�1� v� : �6:9�

The values of these constants for aluminum are speci®ed in Table 2.
Fig. 8 shows the response of aluminum to cycles of loading and unloading in simple shear at di�erent

shearing rates k. Notice that the viscoplastic response causes the ¯ow stress to increase with increased
shearing rate.

To simulate static tensile failure the parameter pd0 was taken to be about one third of the maximum
yield strength. Moreover, given a value for the parameter n in (4.5) the parameters fGd, mg were
determined by matching the peak values of tension T11 during spallation at various constant uniaxial
strain rates Du with an empirical formula for spall stress s� which ®ts experimental data (Kanel et al.,
1997)

s� � 0:635�Du �0:059 GPa, �6:10�
where Du is measured in secÿ1. The values of these parameters associated with n � 1 are given in Table
2 and the values associated with n � 2 are given by

Gd � 2:24� 103 sÿ1, m � 12:0, n � 2: �6:11�

Fig. 8. Cycles of simple shear [for (6.7)] of aluminum at di�erent shearing rates k.
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Fig. 9(a) (associated with n � 1) shows the response of aluminum to uniaxial strain at di�erent
expansion rates Du and indicates a rate-dependent peak spall strength as well as a rapid drop in strength
once spallation becomes signi®cant. Fig. 9(b) shows the response for Du � 106 sÿ1 and indicates that
increasing the value of n causes the spall stress to decrease more slowly. Also, Fig. 9(c) shows that both
sets of parameters fGd, m, ng match the empirical formula fairly well in the usual range of spall
experiments (Du � 104±106 sÿ1) and that both yield the same quasi-static value of spall strength.
Moreover, this ®gure suggests that the value of n can be determined by matching the value of strain rate
associated with the onset of the rapid increase in spall strength.

In summary, the examples presented in this section show that the constitutive equations discussed in
this paper can model a wide range of material response which include both dry porous geological
materials and nonporous and porous metals.
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